Monatshefte für Chemie 107, 433-437 (1976) © by Springer-Verlag 1976

Ramanspektroskopische Untersuchungen an festem Vanadiumoxidtrichlorid VOCl₃

Von

A. Feza Demiray und Wolfgang Brockner

Anorganisch-Chemisches Institut, Technische Universität Clausthal, Clausthal-Zellerfeld, Bundesrepublik Deutschland

Mit 1 Abbildung

(Eingegangen am 23. Oktober 1975)

Raman Spectrum of Solid VOCl₃

A high resolution Raman spectrum of polycrystalline VOCl₃ at --196 °C has been recorded. Besides the chlorine isotope splitting a further splitting of 3 of the 6 fundamentals has been observed. The number of the Raman lines in the v_4 and v_6 region and the intensity ratios in the v_2 region will be explained by a factor group splitting of 2 VOCl₃ molecules in the unit cell.

Einleitung

Die natürliche Isotopenverteilung des Chlors (${}^{35}\text{Cl} : {}^{37}\text{Cl} = 3:1$) bedingt für VOCl₃ vier isotope Species mit unterschiedlicher Häufigkeit. Während die Moleküle VO³⁵Cl₃ und VO³⁷Cl₃ C_{3v}-Symmetrie haben, besitzen die Species mit gemischten Isotopen, VO³⁵Cl₂³⁷Cl und VO³⁵Cl₃³⁷Cl₂, die niedrigere C_s-Symmetrie. Für die genannten Verbindungen mit C_{3v}-Symmetrie werden 6 Normalschwingungen (3 A₁ + 3 E), die sowohl IR- als auch Raman-aktiv sind, erwartet¹. Eine Symmetrieerniedrigung von C_{3v} nach C_s hat eine Aufspaltung der E-Schwingungen in solche der Klassen A' und A" zur Folge, so daß für VO³⁵Cl₂³⁷Cl und VO³⁵Cl³⁷Cl₂ neun sowohl IR- als auch Raman-aktive Normalschwingungen (6 A' + 3 A") erwartet werden¹.

Die publizierten Ramanspektren des flüssigen VOCl₃ zeigen auch die theoretisch erwarteten 6 Ramanlinien²⁻⁵. Zusätzlich fanden *Clark* und *Mitchell*⁶ bei VOCl₃-Lösungen in Cyclohexan eine isotopenbedingte Aufspaltung der symmetrischen V—Cl-Valenzschwingung v_2 , die in Übereinstimmung mit Schwingungsberechnungen aller isotopen VOCl₃-Species von *Hovdan* et al. ⁷ steht. Desgleichen zeigen die Ramanspektren eines festen VOCl₃-Films bei 77 K.⁶ eine Isotopenaufspaltung der v₂-Bande mit anormalem Intensitätsverlauf und eine Aufspaltung zweier entarteter E-Schwingungen. Im Rahmen ramanspektroskopischer Arbeiten an Oxidhalogeniden^{?-10} untersuchten wir auch polykristallines VOCl₃ bei — 196 °C.

Abb. 1. Ramanspektrum des polykristallinen VOCl₃ bei — 196 °C. Spektrometer: Coderg PH 1 mit Photomultiplier EMI 9558 A. Erregerlichtquelle: Rubinpulslaser, 6943 Å, 220/380 mW. Registriergeschwindigkeit: 50 cm⁻¹/ min. Papiervorschub: 30 mm/min. *a* Gesamtspektrum, Zeitkonstante: 2,5 sec, Spaltbreite: 4 cm⁻¹. *b* v₄-Region, Zeitkonstante: 6,5 sec, Spaltbreite: 2 cm⁻¹. *c* v₂-Region, Zeitkonstante: 3,0 sec, Spaltbreite: 2 cm⁻¹. *d* v₆-Region, Zeitkonstante: 2,5 sec, Spaltbreite: 2 cm⁻¹

Experimenteller Teil

Die Darstellung des VOCl₃ erfolgte aus Vanadiumpentoxid (pA, Merck) und Thionylchlorid (Baker, min. 98%)¹¹. Das gebildete VOCl₃ wurde direkt in die gekühlte Ramanküvette fraktioniert destilliert.

Die Registrierung des abgebildeten Ramanspektrums erfolgte mit einem Coderg-PH 1-Ramanspektrographen und Rubinlaserlichtanregung, entgegengesetzt zur Einstrahlrichtung, in einer Anordnung, die an anderer Stelle eingehend beschrieben wurde¹². In dieser Anordnung wurde lediglich der Ofen durch ein mit fl. N₂ gefülltes Dewargefäß ersetzt.

Ergebnisse und Diskussion

Das Ramanspektrum des festen $VOCl_3$ ist in Abb. 1 dargestellt. Die entsprechenden Frequenzwerte sind in Tab. 1 denen des flüssigen $VOCl_3$ gegenübergestellt.

Tabelle 1. Gegenüberstellung der Ramanfrequenzen des polykristallinen und
flüssigen VOCl3 und deren Zuordnung

$\mathrm{Dr} = \mathrm{Droad})$		
VOCl ₃ , fest, 196 °C	VOCl ₃ , fl., 25 °C	Zuordnung (C _{3v})
$34 \mathrm{sh}$		Gitterschwingungen
$53 \mathrm{m}$		0.0
71 m		
$127,5 \mathrm{\ ms}$		
132,5 w	132 s	Ε (ν ₆)
$136,3 \mathrm{ms}$		
	$166,2 \mathrm{m}$	$A_1(v_3)$
174 m		
252 m	250 m	E (v5)
405,8 vw, sh		
407,2 m, sh		
408,4 m, sh		
410,5 s		
	411,5 s	$A_1(v_2)$
413,3 m		
415,9 m, sh		
490,8 vw		
502,7 m		
	507,3 w, br	E (v4)
509,2 w, sh		
528,8 m		
1025 mw		
	1037,5 mw	$A_1(v_1)$

(s = strong, m = medium, w = weak, vw = very weak, sh = shoulder, br = broad)

Das Ramanspektrum des polykristallinen VOCl₃ unterscheidet sich von dem des flüssigen VOCl₃ wie folgt:

v₁: Die symmetrische V=O-Valenzfrequenz verschiebt sich von 1037,5 cm⁻¹ nach 1025 cm⁻¹.

 ν_2 : Das Ramanspektrum des flüssigen VOCl₃ bei — 20 °C zeigt eine Aufspaltung der symmetrischen V—Cl-Valenzschwingung in 4 Linien, deren Intensitätsverlauf der theoretisch erwarteten Isotopenaufspaltung entspricht. In den Spektren des polykristallinen Produktes bei — 196 °C hingegen treten in diesem Bereich 6 Banden auf. Die Anzahl und Intensitätsfolge kann nicht allein auf Isotopenaufspaltung der einzelnen VOCl₃-Species beruhen.

Monatshefte für Chemie, Bd. 107/2

 v_3 : Die symmetrische Deformationsfrequenz spaltet nicht auf und ist um etwa 8 cm⁻¹ nach höheren Wellenzahlen verschoben.

 v_4 : Vier neue Linien unterschiedlicher Intensität treten im Bereich der asymmetrischen V—Cl-Valenzschwingung auf.

v5: Die Lage dieser Bande ändert sich nahezu nicht.

 v_6 : Eine Aufspaltung dieser asymmetrischen V—Cl-Deformationsschwingung in zwei etwa gleich intensive und eine schwache Linie ist zu beobachten.

Zudem werden bei 34, 53 und 71 cm⁻¹ Gitterschwingungen registriert. Außer in der Anzahl und der Intensitätsverteilung der Banden im v_2 -Bereich und dem Auftreten der Gitterfrequenzen stimmt unser Ramanspektrum des polykristallinen VOCl₃ mit dem des VOCl₃-Films von *Clark* und *Mitchell*⁶ im wesentlichen überein.

Das Auftreten von 6 Linien in der v_2 -Region und die Größe der Aufspaltung von v_4 und v_6 ist mit einer normalen Isotopenaufspaltung der VOCl₃-Moleküle nicht im Einklang, zumal bei festem VOBr₃ (Film)⁶ ebenfalls eine v_4 - und v_6 -Aufspaltung in analoger Weise auftritt.

Im Gegensatz zum festen POCl₃ und POBr₃¹³ findet beim VOCl₃ keine Wechselwirkung zwischen einem Sauerstoff- und einem Chloratom des benachbarten VOCl₃-Moleküls in der Elementarzelle statt, da nur eine V=O-Valenzfrequenz bei 1025 cm⁻¹ auftritt.

Die Existenz von 4 Linien im v_4 -Bereich, das Auftreten von 3 Linien in der v_6 -Region und die Beobachtung von 3 Gitterschwingungen besagen, daß wenigstens 2 VOCl₃-Moleküle in der Elementarzelle vorliegen.

Unter Zugrundelegung der Annahme zweier VOCl₃-Moleküle in der Elementarzelle ergeben sich 16 verschiedene Isotopenkombinationen der Art $V_2O_2{}^{35}Cl_{6-n}{}^{37}Cl_n$ mit $n = 0, 1 \dots 6$. Die Zusammenfassung der Isomeren führt zu 7 Species mit unterschiedlicher Häufigkeit (Tab. 2).

Species	Häufigkeit (%)
$O_2V_2^{35}Cl_6$	17,80
O ₂ V ₂ ³⁵ Cl ₅ ³⁷ Cl	35,60
$O_2V_2^{35}Cl_4^{37}Cl_2$	29,66
O ₂ V ₂ ³⁵ Cl ₃ ³⁷ Cl ₃	13,18
$O_2V_2{}^{35}Cl_2{}^{37}Cl_4$	3,30
$O_2V_2^{35}Cl^{37}Cl_5$	0,44
$\mathrm{O}_2\mathrm{V}_2{}^{37}\mathrm{Cl}_6$	0,02
	100.00

Tabelle 2. Relative Häufigkeiten der isotopen VOCl₃-Species

Unter der Voraussetzung, daß die Häufigkeit der Isomeren proportional deren Ramanintensitäten und die Halbwertsbreite der Ramanlinien größer als der Abstand der Maxima dieser Linien ist, läßt sich die Intensitätsverteilung der Linien im v_2 -Bereich durch Überlagerung dieser Einzelfrequenzen verstehen.

Abschließend läßt sich sagen, daß die aufgeführten Beobachtungen am besten mit einer dynamischen Kopplung der Schwingungen zweier VOCl₃-Moleküle in der Elementarzelle (Faktorgruppenaufspaltung) im Einklang stehen. Letzte Klarheit kann eine Kristallstrukturbestimmung, die bisher nicht vorliegt, erbringen.

Herrn Prof. Dr. W. Bues möchten wir für sein stetiges förderndes Interesse unseren Dank aussprechen. Der Volkswagenstiftung danken wir für die Bereitstellung von Mitteln und Geräten und Herrn D. Grünewald für die sorgfältige Aufnahme der Ramanspektren.

Literatur

- ¹ E. B. Wilson, J. C. Decius und P. C. Cross, Molecular Vibrations. New York: McGraw-Hill. 1955.
- ² H. J. Eichhoff und F. Weigel, Z. Anorg. Allg. Chem. 275, 267 (1954).
- ³ F. A. Miller und L. R. Cousins, J. Chem. Phys. 26, 329 (1957).
- ⁴ I. R. Beattie, K. M. S. Livingston, D. J. Reynolds und G. A. Ozin, J. Chem. Soc. A 1970, 1210.
- ⁵ G. A. Ozin, Prog. Inorg. Chem. 14, 173 (1971).
- ⁶ R. J. H. Clark und P. D. Mitchell, J. Chem. Soc. Dalton 1972, 2429.
- ⁷ H. Hovdan, S. J. Cyvin und W. Brockner, Z. Naturforsch. 29 a, 706 (1974).
- ⁸ W. Bues, W. Brockner und F. Demiray, Spectrochim. Acta **30** A, 579 (1974).
- ⁹ W. Brockner, H. Hovdan und S. J. Cyvin, Z. Naturforsch. 29 a, 620 (1974).
- ¹⁰ W. Brockner und H. Hovdan, Mh. Chem. 105, 750 (1974).
- ¹¹ L. Kolditz, Anorganikum, S. 703. Berlin: VEB Deutscher Verlag der Wissenschaften. 1967.
- ¹² W. Bues, W. Brockner und D. Grünewald, Spectrochim. Acta 28 A, 1519 (1972).
- ¹³ K. Olie, Dissertation, Universität Amsterdam, 1974.

Korrespondenz und Sonderdrucke: Dr. W. Brockner Anorganisch-Chemisches Institut Technische Universität Clausthal D-3392 Clausthal-Zellerfeld Bundesrepublik Deutschland